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Real Time Business 

Statistics with Kafka, 

KSQL and 

Elasticsearch

One of our clients at Lemonade wanted to have the possibility to 
view real time business statistics on the usage of the software we’ve 
built. The software processes business events received from 
different actors and acts as a coordinator between them. A 
customer might be sending a purchase order which has to be 
forwarded to the different services, for instance warehouse, finance 
and to external providers before sending the confirmation to the 
customer. Our client wanted to count the number of business 
events occurring in a time period, for example the number of orders 
placed for different products broken down by the customer.

We decided to build this as an independent subsystem which 
receives and aggregates business events which later on are shown 
to the users in nice interactive Kibana boards.

Enter KSQL, a SQL-inspired engine built on top of Kafka 
Streams facilitating the process of writing Stream applications by 
allowing to write them in a SQL-like syntax and executing them in 
the KSQL Engine.

The general process looks like this:

https://www.confluent.io/product/ksql/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/


When a business event occurs in our services, it is forwarded 
to a Kafka topic which is aggregated by a continuous KSQL 
query that calculates a specific statistic in a time window 
and forwards it to a separate topic. This statistic topic 
content is then sent to Elasticsearch by leveraging the Kafka 
Connect Elasticsearch Sink Connector where the data is 
persisted and is available for Kibana to consult and visualize.

Getting Messages to Kafka

First step was to write an agent to intercept the events, 
which was added to the different services handling the 
events. This interceptor extracts information from the events 
and acts as a Kafka Producer sending the pertinent 
information to a Kafka Topic. We decided to follow 
Confluent’s recommendation and use Avro for serializing the 
data which has a smaller footprint than json given that the 
schema is not stored within the message but in the Schema 
Registry. This means that an instance of the Schema 
Registry must be available for the Kafka Producer, KSQL 
Engine and the Elasticsearch Sink Connector.

For this article, an example application is used for 
demonstrating the different technologies. A simple 
producer is used for publishing the records to two topics in 
Kafka: purchase_orders and delivery_notes, here is what the 
avro messages look like in the topic:



The avro definition of the purchase order is the following:
{
“namespace”: “be.lemonade.ksqldemo.avro”,
“type”: “record”,
“doc”: “An incoming purchase order”,
“name”: “PurchaseOrder”,
“fields”: [
{“name”: “order_id”, “type”: “long”},
{“name”: “created_on”, “type”: “long”, “logicalType”: 
“timestamp-millis”},
{“name”: “client_name”, “type”: [“null”, “string”]},
{“name”: “product_name”, “type”: [“null”, “string”]}
]
}
While the delivery_note is:
{
“namespace”: “be.lemonade.ksqldemo.avro”,
“type”: “record”,
“doc”: “A delivery note”,
“name”: “DeliveryNote”,
“fields”: [
{“name”: “order_id”, “type”: “long”},
{“name”: “created_on”, “type”: “long”, “logicalType”: 
“timestamp-millis”},
{“name”: “address”, “type”: [“null”, “string”]}
]
}
Processing the data in KSQLAs you can see, the avro output 
is not very readable when looking at the topic directly, 
luckily things looks much nicer in KSQL.

Once our topics are populated we can create a couple of 
queries to see the purchase orders and delivery notes. KSQL 
allows defining both streams and tables. While streams are a 
continuous flow of events where all updates are registered 
(think of a database transaction log), a table will just contain 
the current value for a specific record id.

I’ll create first two streams, one per topic and then a simple 
select to show the content of the purchase orders stream:

Few things to note here: first, when creating the stream we 
need to specify from which kafka topic the stream will be 
reading and the format of the records, avro in our case. 
Second, unlike a regular select query executed in a 
relational database where the results are returned once the 
operation finishes, a select in KSQL will keep running until 
interrupted, showing the results as they come.

Now, let’s say we have a warehouse that only delivers chairs 
and is not interested in receiving events where other 
products are purchased. In this case we could create a new 
topic called purchase_orders_chairs and have the chairs 
warehouse service to consume from this topic:



In this case we need to create a persistent query:

CREATE STREAM purchase_orders_chairs WITH(KAFKA_TOPIC=’purchase_orders_chairs’, PARTITIONS=1, VALUE_FORMAT=’AVRO’) 
AS SELECT * FROM purchase_orders WHERE product_name = ‘Chair’;

In here we specify the name of the kafka topic where the result will be written to, the format and the actual select query with the 
filter we are interested in, in this case the purchase orders of chairs. It is important to note that this query will keep running in the 
background even if I log out from the KSQL console. As long as the KSQL Engine is running it will be processing the events.

Going back to our main focus of creating statistics, lets create a simple one where we count the number of products ordered per 
minute broken down by client:

CREATE TABLE purchase_orders_statistics WITH (KAFKA_TOPIC = ‘purchase_orders_statistics’, PARTITIONS=1, VALUE_FORMAT = 
‘AVRO’) AS
SELECT WindowStart() AS “DATE”, client_name, product_name, COUNT(*) AS count
FROM purchase_orders
WINDOW TUMBLING (SIZE 1 MINUTES)
GROUP BY client_name, product_name;

Note that here we are creating a table instead of a stream since we are just interested in the latest result for a specific group 
(where a group is the combination of window time – client_name – product_name). The results of this query will be stored in a 
topic called purchase_orders_statistics and the calculation will be done per minute (specified in the window tumbling clause).



Now that we have our three statistics calculated and stored in kafka topics, it is time to visualize the data.

Connecting Kafka with Elasticsearch

The Kafka Connect Elasticsearch Sink Connector provided with the Confluent platform is a Kafka consumer which listens to one or 
more topics and upon new records sends them to Elasticsearch. In our case we will configure it to listen to the statistics topics so 
the results of the KQL statistics queries are indexed in Elastic.

Here is the configuration for the connector:

name=ksqldemo-elasticsearch-sink
connector.class=io.confluent.connect.elasticsearch.ElasticsearchSinkConnector
tasks.max=1
topics.regex=delivery_notes_statistics|purchase_orders_statistics|handling_process
key.ignore=true
connection.url=http://192.168.56.12:9200
type.name=kafka-connect
schema.ignore=true
key.converter=org.apache.kafka.connect.storage.StringConverter
value.converter.schemas.enable=false
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://192.168.56.12:8081

http://192.168.56.12:9200/
http://192.168.56.12:8081/


Some important properties:

topics.regex contains a regex of the topic names we want to send to Elastic.

key.ignore when false elastic will use as the document id the same key as the record in kafka, otherwise a new one will be generated. 
We set it to true since we want all the results of the same aggregation to end up in the same document (since we are just interested 
in the final one).

schema.ignore: ignore the schema during indexing.

connection.url is the URL where elastic is running.

Key and value converter: since the key is a string and the value is avro we want to use the appropriate connectors. Given that avro is 
used, the URL of the Schema Registry has to be provided.

Once the connector is up and running the indices will be created. We could check it in Kibana:

Now the only thing left to do is creating the Kibana dashboards.



Visualizing the data

The final step of the setup is to choose the right visualizations for the data. Given that each statistic allowed breaking down the 
data by multiple fields, we ended up creating one dashboard with multiple visualizations for each statistic. For example, the
purchase order statistics is broken down both by product and client, so a dashboard might look like this:



Final thoughts

Kafka, KSQL, Elasticsearch and Kibana is a powerful 
combination and play nicely together. Writing the queries in 
KSQL is an easy and familiar way to process streams, but 
unfortunately it was not enough to cover all of our use cases 
and we had to refer to writing some Kafka Streams 
applications. Our problem in particular was the lack of 
possibility to explode arrays, for which we had to create a 
Kafka Streams application which explodes the data and stores 
the result in a topic which KSQL can later query. At the time of 
writing an issue exists to add this functionality.

Once the indexes were populated in Elasticsearch I was 
surprised how easy it was to create interactive dashboards 
containing multiple visualizations.

The final solution contained about 60 queries for calculating 
50 statistics. Those queries were running in a cluster of two 
KSQL Engines processing around 150 events per second, 
enough to satisfy our requirements.

https://github.com/confluentinc/ksql/issues/527
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